

Modeling the spatial distribution of internal corrosion in API 5L pipes carrying gasohol

- Saswata Chakraborty (Mgr. Projects)
- Akshay Singh Yadav (Asst. Mgr. Projects)
 Engineering & Projects
 Bharat Petroleum Corporation Limited

Introduction

- Present engineering practice for the design of the product piping for petroleum handling terminals involves size optimization based on hydraulic losses and the cost of the pipeline.
- Pipelines are usually replaced in 7-10 years to augment the terminal for the increased market demand.
- Stage-wise implementation of biofuel blending mandate requires frequent (3-5 years) rerouting and replacement of the pipelines.

Company	Current Tankage	Work-in-progress /Additional	Total capacity	Ethanol Supply Year	Qty Supplied (crore Lit)	Blending %age I
	(Cr Lit)	Planned (Cr Lit)	(Cr Lit)	2013-14	38.0	1.53%
IOC	6.50	12.50	18.60	2014.15	(7.4	2.220
BPC	4.50	7.40	11.90	2014-15	67.4	2.33%
				2015-16	111.4	3.51%
HPC	6.80	6.94	13.74	2016-17	66.5	2.07%
OMC Total	17.80*	26.84	44.64**	201017	00.5	2.07 /
				2017-18	150.5	4.22%

* With the current capacity, about 430 crore litres of ethanol can be handled annually considering 15 days of coverage period.

** Similarly, with a total tankage capacity of 44.64 crore litres by 2025, about **1060 crore litres** of ethanol can be handled annually considering 15 days of coverage period.

2018-19	188.6	5.00%
2019-20	173.0	5.00%
2020-21	332	8.50%
· · · · · ·		

- 22nd Septem

Current and planned storage capacities of OMCs

Quantity Supplied (Ethanol) and % Blending Trends

Introduction

ROADMAP FOR ETHANOL BLENDING IN INDIA 2020-25, Report of the Expert Committee, NITI Aayog | Ministry of Petroleum and Natural Gas (Date: 03 June 2021)

- Major infrastructure modification.
- Materials are drop-in compatible, but plants are not.
- Some sections / linings lining are aging faster than the rest of the surface.
- Non uniform degradation reduces the life-cycle.
- Heavy maintenance cost in operating conditions.

Udaipur, India 19^h - 22nd Septemb

Significance & Problem Identification

Corrosion Mechanism	Main Cause	Potential Areas	Identification
CO2	Fatigue Loads, Fuel Property	Area Adjacent to Pump	Uniform pitting
H2S	Fuel Property	-	
Microbiological (MIC)	Moisture, H2S	Near Storage Tanks	Localized pitting
TOLC (Top of The Line Corrosion)	Evaporation Rate, moisture, temperature distribution	Underground sections	10-12-2 O' clock positions
UDC (Under Deposit Corrosion)	Oxygen Deficiency, flow regime	Trapped sections, Underground Passings	4-6-8 O' clock positions
PWC (Preferential Weld Corrosion)	Dissimilar Metallic Crystal	Weld joints	Pitting around weld joints

Significance & Problem Identification

- Purpose is to study the spatial variability of corrosion in the branched pipe network.
- Achieving RMSE <= 3 % {Compared to time series ML models}
- Quantification of differential aging.
- Identification of prevailing oxidation mechanism { RSQ > 0.81 & Corr. >0.9}
- Machine learning-based classification of most affected zones.
- Selection of optimal in-plant orientation.
- Note: Present study evaluates the uniform rate of oxidations. Localized heavy pitting, hydrogen blistering, or induced lamination are excluded.

Methods & Material – Key Methodology

	Refining of data		
Pipe – API 5L	J		- /
Fluid – Motor Spirit (Segregation of noise and	Training and Testing	
	signal	Defining The Problem	
Pure Ethanol E100 & Ethanol Blended MS (Box and whisker method Normalization	Identification of Input	
		Parameters	5
		Dependence Correlation	
	-	Results	
		Testing & Evaluation	

Methods & Material – Plant Layout

Udaipur, India

Methods & Material – Variables

Independent Variables	Dependent Variables
Distance from Source (Nx)	Reduction in pipe wall thickness (Ndt)
Reynolds Number (NRN)	Ndt at 12,2,4,6,8 & 12 O Clock Positions (t12, t2, t4, t6, t8 & t10)
Heat Affected Zone (HAZ)	Maximum Ndt around the cross section (dtmax)
Flow Direction (GA & FA)	Average Ndt around the cross section (dtavg)
Fuel Properties (FP)	
Relative Elevation (Ht)	
Pressure (Vf)	
Relative Distance (Dlen)	

Methods & Material – MARS

- Multivariate Adaptive Regression Splines, or MARS, is an algorithm for complex non-linear regression problems. Introduced by Jerome H. Friedman in 1991
- It is a supervised machine learning algorithm suitable for highly volatile data.
- The algorithm involves finding a set of simple linear functions that in aggregate result in the best predictive performance.

Results & Discussion

Corrosion Mechanism	Main Cause	Potential Areas	Identification
CO2	Fatigue Loads, Fuel Property	Area Adjacent to Pump	Uniform pitting
H2S	Fuel Property	-	-
Microbiological (MIC)	Moisture, H2S	Near Storage Tanks, U sections	Localized pitting
TOLC (Top of The Line Corrosion)	Evaporation Rate, moisture, temperature distribution	Underground sections	10-12-2 O' clock positions
UDC (Under Deposit Corrosion)	Oxygen Deficiency, flow regime	Trapped sections, Underground Passings	4-6-8 O' clock positions
PWC (Preferential Weld Corrosion)	Dissimilar Metallic Crystal	Weld joints	Pitting around weld joints

Results & Discussion

Udaipur, India 19th - 22nd September

Results & Discussion – Localized Factors - Localized Factors

- The present study is in good agreement with product handling experience at oil terminals.
- Water enters the network with MS and causes aggressive scale formation when mixed with ethanol. The bottom position (6 O clock) is found to be more corroded in the case of ethanol.
- In case of E100 & E0, relative variation of thickness not significant.

w.corco

Results & Discussion – T Test & Correlation

- Relatively weak correlation between angular positions suggests the influence of localized factors is more than space-dependent factors in the case of EO.
- Opposed to that, E100 data depicts a stronghold of localized variables.

	t12	t2	t4	t6	t8	t10
t12	1.000000	0.708854	0.728421	0.768252	0.758921	0.729874
t2	0.708854	1.000000	0.638623	0.694664	0.690983	0.739495
t4	0.728421	0.638623	1.000000	0.668278	0.722390	0.725223
t6	0.768252	0.694664	0.668278	1.000000	0.713732	0.699986
t8	0.758921	0.690983	0.722390	0.713732	1.000000	0.828457
t10	0.729874	0.739495	0.725223	0.699986	0.828457	1.000000

	t12	t2	t4	t6	t8	t10
t12	1.000000	0.302718	0.481450	0.414873	0.472922	0.634665
t2	0.302718	1.000000	0.444815	0.487345	0.364073	0.391372
t4	0.481450	0.444815	1.000000	0.600676	0.522788	0.622316
t6	0.414873	0.487345	0.600676	1.000000	0.653122	0.592229
t8	0.472922	0.364073	0.522788	0.653122	1.000000	0.781738
t10	0.634665	0.391372	0.622316	0.592229	0.781738	1.000000

	t12	t2	t4	t6	t8	t10
t12	1.000000	0.006751	0.242201	0.151301	0.346815	-0.312149
t2	0.006751	1.000000	0.653653	0.133076	-0.152234	0.669241
t4	0.242201	0.653653	1.000000	-0.099240	0.080381	0.284281
t6	0.151301	0.133076	-0.099240	1.000000	0.233001	0.225101
t8	0.346815	-0.152234	0.080381	0.233001	1.000000	-0.420736
t10	-0.312149	0.669241	0.284281	0.225101	-0.420736	1.000000

E10

E(

Results & Discussion – T Test & Correlation

- The coefficient of correlation is either close to zero or negative in most of the cases for E10.
- This suggests non-uniform oxidation on the inner walls of the pipe.
- 12 O'clock lining is aging faster than the rest of the surface.

	t12	t2	t4	t6	t8	t10
t12	1.000000	0.708854	0.728421	0.768252	0.758921	0.729874
t2	0.708854	1.000000	0.638623	0.694664	0.690983	0.739495
t4	0.728421	0.638623	1.000000	0.668278	0.722390	0.725223
t6	0.768252	0.694664	0.668278	1.000000	0.713732	0.699986
t8	0.758921	0.690983	0.722390	0.713732	1.000000	0.828457
t10	0.729874	0.739495	0.725223	0.699986	0.828457	1.000000

	t12	t2	t4	t6	t8	t10
t12	1.000000	0.302718	0.481450	0.414873	0.472922	0.634665
t2	0.302718	1.000000	0.444815	0.487345	0.364073	0.391372
t4	0.481450	0.444815	1.000000	0.600676	0.522788	0.622316
t6	0.414873	0.487345	0.600676	1.000000	0.653122	0.592229
t8	0.472922	0.364073	0.522788	0.653122	1.000000	0.781738
t10	0.634665	0.391372	0.622316	0.592229	0.781738	1.000000

	t12	t2	t4	t6	t8	t10
t12	1.000000	0.006751	0.242201	0.151301	0.346815	-0.312149
t2	0.006751	1.000000	0.653653	0.133076	-0.152234	0.669241
t4	0.242201	0.653653	1.000000	-0.099240	0.080381	0.284281
t6	0.151301	0.133076	-0.099240	1.000000	0.233001	0.225101
t8	0.346815	-0.152234	0.080381	0.233001	1.000000	-0.420736
t10	-0.312149	0.669241	0.284281	0.225101	-0.420736	1.000000

E10

E(

Results & Discussion – Over The Lengther India

- It can be derived that presence of HAZ, highly turbulent area (near pumps), and buffer storage tanks governs the length distribution of the corrosion.
- Surface are severely attacked near weld joints and storage tanks.

Results & Discussion – Over The Lengther India

- E100 is more corroded than E0. The figure shows a similar pattern for gasohol (E10) regarding spatial distribution.
- Nevertheless, the magnitude of corrosion is more as compared to the former 2 cases.

Results & Discussion - Fluctuations

• Change in thickness around the section of pipe over the entire length is plotted. As expected, the standard deviation is higher near the tankage and pumps.

Udaipur, India

- 22nd September

corcon

• One mechanism is out racing the others.

Results & Discussion - MARS

- Model is trained with the available data set. Input variables are grouped in various combinations to identify the significant factors.
- Train-to-test ratio is 80:20
- · Higher degree of regressions were simulated to get the best results for the scattered data
- Sample data -

Nx	NRN	HAZ	FA	GA	Dia	Dlen	Ht	FP	Vf	dtmax
0	0.155216	1	0.7071	0	0.25	20	-0.45	1	0.423	0.395161
0.013195	0.155216	0	0	0	0.25	16	-0.45	1	0.432	0.330645
0.02639	0.155216	0	0	0	0.25	12	-0.45	1	0.432	0.443548
0.039584	0.155216	0	0	0	0.25	6	-0.45	1	0.432	0.432796
0.052779	0.155216	0	0	0	0.25	2	-0.45	1	0.432	0.443548
Leines I	10 A			Ser	1					

Results & Discussion - MARS

MARS	RMSE Value		
Clustering of Variables	E100	E0	E10
NX, NRN, HAZ, FA, GA, FP, Vf	0.0247	0.0082	0.0063
NX, NRN, HAZ, FA, GA, FP, Ht, Dlen	0.0170 (1)	0.0055(2)	0.0023(3)
NX, NRN, HAZ, FA, GA, FP, Ht, Vf, Dlen	0.0247	0.0082	0.0063
NX, NRN, HAZ,FA Ht, Dlen	0.0247	0.0082	0.0063
NX, NRN, HAZ, Ht, Vf	0.0247	0.0062	0.0063
NRN, HAZ, GA	0.0289	0.0099	0.0067
NRN,HAZ, FP	0.0289	0.0082	0.0063
NX, NRN, FP	0.0247	0.0062	0.0063
NX, FA, GA	0.0247	0.0070	0.0063
NX, NRN, FA, GA	0.0247	0.0062	0.0063

- RMSE of the model is tabulated with reactive input clustering
- Pearson correlation coefficient for models marked as 1, 2, and 3 in the table is 0.9011, 0.9452, and 0.9434 respectively

Results & Discussion – Fitting the curve

Results & Discussion

- The spatial variability of corrosion predicted in the specific research dedicated to TOLC, PWC and UDC matches the observed data.
- The developed model is successfully predicting spatial variability of corrosion reaction in line with pre-established corrosion mechanisms.

Testing & Evaluation – Worked Example daipur, India

- Model prepared for E100 using NX, NRN, HAZ, FA, GA, FP & Vf as input variable. Expected MAE = 0.0247.
- Pipe configuration is same as what we have taken for EO.
- Corrosion behavior of the network is predicted.

Testing & Evaluation – Worked Example daipur, India

- Section depicted in the left is remodeled into what is show in the right by alteration of the pipe fitting, fitting locations, pipe diameter and relative valve positioning. RMSE = 2.23 % & 2.65% respectively.
- Economic analysis can be performed to achieve desired level of investment. Similar pre-established methods can be used to perform pipe life span Vs. pipe size analysis.

Ν	x NRN	HAZ	FA	GA	Dia	Dlen	Ht	FP	Vf dtmax		Nx	NRN	HAZ	FA	GA	Dia	Dlen	Ht	FP	Vf dtmax
	0 0.310432	10	0.7071	0	0.2	42	1.2	1	0.2114		0	0.293567	1	0.7071	0	0.2	21	0.3	1	0.1323
0.4	4 0.310432	0 0	0.7071	0	0.2	34	1.2	1	0.2378		0.44	0.293567	0	0	0	0.2	13	0.3	1	0.1406
0.5	4 0.310432	0 0	0.7071	0	0.2	26	1.2	1	0.3502	N	0.54	0.293567	0	0	0	0.2	5	0.3	1	0.3222
0.6	5 0.310432	0	0	0	0.2	18	1.2	1	0.3413		0.65	0.293567	0	0	0	0.2	2	0.3	1	0.1316
1	2 0.310432	1	0	0	0.2	10	1.2	1	0.2897		1.2	0.293567	1	0	0	0.2	1	0.3	1	0.1383
1.3	2 0.310432	10	0.7071	0	0.2	9.95	1.2	1	0.2198	V	1.32	0.293567	1	0.7071	1	0.2	14	0.6	1	0.1022
1.7	5 0.310432	10	0.7071	0	0.2	9.7	1.2	1	0.2052		1.75	0.293567	0	0.7071	0	0.2	9	0.6	1	0.2473
1.9	9 0.310432	1	0	0	0.2	5.7	1.2	1	0.0307		1.99	0.293567	0	0	0	0.2	2	0.6	1	0.1644
	12							172					1	2			- *			0.75

Testing & Evaluation – Comparison

- Comparison is presented with other time dependent machine learning models.
- The cumulative retention of information increases as the data dimension increases, and the RMSE is least for E10 and highest in the case of E100.
- Variable set NX, NRN, HAZ, FA, GA, FP, Ht, Dlen is providing X, NRN best estimation.
- Maximum RMSE = 2.55% is withing the desired zone.

Error comparison between LR.ANN.PCA-CPSO-SVR. De Waard95(OLGA).

	LR	1	ANN	PCA-CF	SO-SVR D	e Waard95(OLGA	
MAE	0.12	02 (0.149	0.083	0	.568	
RMSE	2.9%	i 1	2.2%	2.7%	6	.2%	
rror con	ıparison	of differe	nt algori	thms.			
rror con	nparison SVR	of differe PCA-SV	nt algori R PCA	thms. -GA-SVR	PCA-PSO-SVR	PCA-CPSO-SV	
rror con MAE	nparison SVR 0.102	of differe PCA-SV 0.194	nt algori R PCA 0.09	thms. -GA-SVR 8	PCA-PSO-SVR 0.086	PCA-CPSO-SVI 0.083	

	RMSE V	RMSE Value				
MARS						
Clustering of Variables	E100	EO	E10			
BIX, NRN, HAZ, FA, GA, FP, Vf	3.71%	1.23%	0.95%			
NX, NRN, HAZ, FA, GA, FP, Ht,			•			
Dlen	2.55%	0.83%	0.35%			
NX, NRN, HAZ, FA, GA, FP, Ht,						
Vf, Dlen	3.71%	1.23%	0.95%			
NX, NRN, HAZ,FA Ht, Dlen	3.71%	1.23%	0.95%			
NX, NRN, HAZ, Ht, Vf	3.71%	0.93%	0.95%			
NRN, HAZ, GA	4.34%	1.49%	1.01%			
NRN,HAZ, FP	4.34%	1.23%	0.95%			
NX, NRN, FP	3.71%	0.93%	0.95%			
NX, FA, GA	3.71%	1.05%	0.95%			
NX, NRN, FA, GA	3.71%	0.93%	0.95%			

Conclusion

- Proposed method provides understanding of internal corrosion distribution over pipe network. Thus enables the design engineer to choose optimal configuration.
- Provides insight on differential aging.
- Able to identify prevailing local oxidation mechanism.
- Classification of spatial distribution.
- Proposed method will not only be helpful for design of new pipe network but can also prove helpful in modification / re-engineering of existing network (as in the case of augmentation job).

Further Works

- Quantification of evaporation rate.
- Processing the outliners.
- Inclusion of temperature gradient to improve model MSE and RSQ.
- System reliability analysis.
- Random field theory to identify pitting.
- Conjunction with time-dependent models.

Thank You

